Metal oxide-graphene field-effect transistor: interface trap density extraction model
نویسندگان
چکیده
منابع مشابه
Metal oxide-graphene field-effect transistor: interface trap density extraction model
A simple to implement model is presented to extract interface trap density of graphene field effect transistors. The presence of interface trap states detrimentally affects the device drain current-gate voltage relationship Ids-Vgs. At the moment, there is no analytical method available to extract the interface trap distribution of metal-oxide-graphene field effect transistor (MOGFET) devices. ...
متن کاملMetal-Oxide-Semiconductor Field Effect Transistor (MOSFET)
The IGFET or MOSFET is a voltage controlled field effect transistor that differs from a JFET in that it has a “Metal Oxide” Gate electrode which is electrically insulated from the main semiconductor n-channel or p-channel by a very thin layer of insulating material usually silicon dioxide, commonly known as glass. This ultra thin insulated metal gate electrode can be thought of as one plate of ...
متن کاملGraphene Nano-Ribbon Field Effect Transistor under Different Ambient Temperatures
This paper is the first study on the impact of ambient temperature on the electrical characteristics and high frequency performances of double gate armchair graphene nanoribbon field effect transistor (GNRFET). The results illustrate that the GNRFET under high temperature (HT-GNRFET) has the highest cut-off frequency, lowest sub-threshold swing, lowest intrinsic delay and power delay product co...
متن کاملChannel doping-dependent analytical model for symmetric double gate metal-oxide-semiconductor field-effect transistor. I. Extraction of subthreshold characteristics
An analytical 2D model of subthreshold current (I DSsub), subthreshold swing (S sub), and threshold voltage (V TH) roll-off with a variation of channel doping concentration (N A) for symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is presented. First of all, the channel potential is obtained by solving the 2D Poisson's equation with the help of the evanesce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Beilstein Journal of Nanotechnology
سال: 2016
ISSN: 2190-4286
DOI: 10.3762/bjnano.7.128